
Rearranging blocks into densely packed configurations

Filippos E. Sotiropoulos and Ryan J. Sandzimier

Abstract—In this project we implement task and motion
planning for an object rearrangement problem. A collection
of cube blocks are arranged in a densely packed configuration
by utilising a combination of pick-and-place as well as non-
prehensile pushing actions. Utilising a Probabilistic Roadmap
planner to choose control actions to relocate single blocks and
a recursive algorithm, called Piecewise Linear Non-Monotone
Rearrangement Search, to plan the sequence of blocks to move,
we are able to successfully plan a sequence of actions to rear-
range handfuls of blocks from a random original configuration
to the densely packed grid. The method is demonstrated on an
experimental setup.

Index Terms—Robot manipulation, block rearrangement,
pick-and-place, pushing

I. INTRODUCTION

IN this paper we perform a block rearrangement task. Us-
ing pick-and-place as well as pushing actions we manage

to rearrange blocks from a random initial configuration to
a densely packed configuration using a robot arm equipped
with a two-finger gripper. Due to the dense packing, the final
desired configuration cannot be achieved by only picking
up and placing the blocks. Instead pushing the blocks is
necessary so as to slide blocks between others.

The problem of manipulating multiple blocks to a desired
configuration is a very specific example of what broadly
could be classed as a combined task and motion planning
problem [1]. As such various method have been applied to the
problem such as evaluating good heuristics for considering
the planning problem in an integrated manner [2] or methods
based on discretizing the workspace [3]. In addition methods
that leverage the environment to align blocks for dense
packing arrangements has been proposed [4]. In this project
we utilize a search based approach to solve the rearrangement
problem [5] in conjunction with a low level planner.

II. PROBLEM STATEMENT

The problem at hand is to manipulate wooden blocks
from some scattered configuration into some desired ordered
configuration. The blocks rest on a flat surface and are con-
strained to planar motion on the table top. Fig. 1 illustrates
an example of an initial configuration and final configuration
of the blocks. The configuration can be represented as a
list of block poses, where each block pose contains the
position (x,y) and orientation θ . A planner should determine
a sequence of actions for the robot to take to reach the desired
configuration and the robot should execute this sequence
of actions. The planner should not choose any actions for

F. E. Sotiropoulos (fes@mit.edu) and R. Sandzimier (rsandz@mit.edu) are
with the Department of Mechanical Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, USA.

Fig. 1. The task is to manipulate the blocks from the scattered state (left)
to an ordered state (right).

which there is a collision. Two blocks should never collide.
The gripper should never collide with a block that is not
purposefully being manipulated.

Using a two-finger gripper, the robot can manipulate a
block by picking it up at one location and placing it down
at a different location. We refer to this as a pick-and-place
action. A pick-and-place action is parameterized using the
initial block pose (x,y,θ), final block pose, and the grasp
orientation. In general, there are two pairs of block faces the
gripper can grasp and the grasp orientation specifies which
one to use. Fig. 2 illustrates the pick-and-place actions that
can be used to move a specific block in a given configuration.
Since the final configuration requires the blocks to be densely
packed, there are cases where the robot cannot move the
block to its final location using a pick-and-place action. Fig.
3 illustrates such a case. In this example, moving block 6 to
its final location using a pick-and-place action would result
in the gripper colliding with block 3, 5, or 9. Therefore,
we require another way of manipulating the block to handle
these cases. By pushing on one side of a block with the
gripper using two points of contact, the robot can push an
object in a straight line. We refer to this as a push action.
Fig. 3 illustrates the push actions that can be used to move
a specific block in a given configuration. A push action is
parameterized using the initial block pose (x,y,θ), the push
direction, and the push distance. Push actions must move the
block perpendicular to the block face that is being contacted.

III. METHOD

We take a hierarchical approach to the problem. A high
level planner, called “piecewise linear non-monotone Rear-
rangement Search” (plRS) [5], which is designed to deal
with complicated cases of object rearrangement, determines
the sequence of blocks that must be moved to transition
between different configurations. A Probabilistic Roadmap



Fig. 2. Reachable region (blue) using pick-and-place action on block 9.

Fig. 3. Reachable region (blue) using pick-and-place action on block 6.
Block 6 cannot be moved into its final location using a pick-and-place action
because other blocks are in the way of the gripper fingers.

Fig. 4. Reachable region (orange) using pushing action on block 6. Block 6
can be moved into its final location without collision using a pushing action.

(PRM) path planner [6] is then used to determine the specific
actions to move a specific block from one configuration to
another. In the subsequent subsections, the two planners and
their integration is detailed.

A. Piecewise Linear Non-Monotone Rearrangement Search

The plRS algorithm is a recursive method that attempts
to move blocks into their goal configuration while allowing
blocks which have not yet reached their goal location to
be cleared. The full algorithm pseudocode can be seen in
Algorithms 1 and 2. A single call of the plRS algorithm
takes in a target object o to move to its goal, a set of objects
which are still remaining to place OR, the current block
configuration αC and the final goal configuration αF . It then
returns a path, as described by a list of subsequent actions
to perform on the system.

The first step in every call of plRS is to call the low level
motion planner (details of which are provided in Section
III-B) which generates a motion plan, and set of requisite
actions, to move a single block from one configuration to
another. This planner considers all objects that are in OR as
not being an obstacle to avoid. As such it takes in o, αC, αF
and OR. It then returns a set of actions if found, πU , and also
the set of blocks which are in the way but can be moved,
Ob. If an obstacle-free path is found for that block then the
algorithm proceeds to recursively call plRS for the remaining
blocks until all blocks have been placed while concatenating
the series of actions which will place each block at each
lower layer of recursion.

On the other hand, if a block is in the way the method will
call the CLEAR algorithm (Algorithm 2) which recursively
attempts to move blocks which are in the way to a configu-
ration where they are no longer obstructing the path of the
original block that was trying to be placed in its goal state.
This method leverages the configuration sampling method
outlined in Section III-B to find a valid configuration to which
the block can be moved (line 1). Again, the path to move the
cleared block may be obstructed and so lines 6-11 detail how
the path may again be recursively cleared.

B. Probabilistic Road Map

As specified in Section III-A, the probabilistic road map
(PRM) planner takes in o, αC, αF and OR and returns a
sequence of actions, πU , and the set of blocks that are in the
way and must be moved first, Ob. In this section, we describe
our implementation of this PRM planner.

First, the PRM planner samples N intermediate configu-
rations. The PRM planner is meant to plan a sequence of
actions to move block o from its starting configuration in
αC to its final configuration in αF . Since only one block is
being moved, αC and αF differ only in the pose of block
o. The sampled intermediate configurations should also only
differ from αC and αF in this way. Therefore, only the
pose of block o needs to be sampled for each intermediate
configuration. The sampled block o poses are allowed to
collide with any blocks in the set of remaining blocks, OR.
However, any block o poses that collide with blocks that



Algorithm 1: plRS(o,OR,αC,αF)

1 πU ,Ob← PRM(o,αC,αF ,OR);
2 if πU 6= /0 & Ob == /0 then
3 αC[o]← αF [o];
4 if OR == /0 then
5 return πU
6 for each or ∈ OR do
7 π ← plRS(or,OR \ob,αC,αF) ;
8 if π 6= /0 then return πU |π;
9 else

10 ob← a block in Ob ;
11 if ob ∈ OR then
12 αC,π

′← CLEAR(ob,OR \ob,αC) ;
13 if π ′ 6= /0 then
14 π ← plRS(o,OR,αC,αF);
15 if π 6= /0 then return π ′|π;
16 return /0

Algorithm 2: CLEAR(o,OR,αC)

1 αF ← SAMPLE NEW POSE(o,αC);
2 πU ,Ob← PRM(o,αC,αF ,OR);
3 if πU 6= /0 & Ob == /0 then
4 αC[o]← αF [o];
5 return αC, πU
6 else
7 ob← a block in Ob;
8 if ob ∈ OR then
9 αC, π ′← CLEAR(ob,OR \ob,αC);

10 if π ′ 6= /0 then
11 αC, π ← CLEAR(o,OR,αC);
12 if π 6= /0 then return αC, π ′|π;
13 return /0

are not in OR should be thrown out and re-sampled. In this
way, we guarantee the sampled poses do not collide with any
previously placed blocks. This task suffers from the narrow
passage problem. In some cases, a push action is required to
move a block to its final location. In order to execute this
action, there must be an intermediate block o pose along a
straight line perpendicular to a block face. Sampling block
poses uniformly, the probability of sampling a block pose
along this line is zero. Therefore, we bias the sampling so
that with probability ε the block pose is sampled along one
of these lines and with probability 1− ε , the block pose is
sampled uniform randomly over the workspace. N and ε are
tunable design parameters.

After sampling the intermediate configurations, we con-
struct a road map by checking each pair of configurations
and connecting them with any any feasible actions that could
accomplish this configuration transition. These connections
are uni-directional. That is, it is possible for there to exist an
action to transition from configuration β1 to configuration β2,
but there does not an exist any action that would transition
from configuration β2 to configuration β1. Also, there may be

multiple connections between configurations. For example, it
is possible that a pick-and-place action or a push action are
both feasible actions to accomplish some configuration tran-
sition. In addition, it is possible that a pick-and-place action
using either of the two possible grasps would accomplish
a transition, in which case there would be one connection
per grasp. The planner checks which actions could execute
the transition and then checks if there are any collisions
between the block or gripper and other blocks. If there
are collisions with blocks not in OR, the connection is not
allowed. However, collisions with blocks in OR are allowed.
Each connection contains information about the associated
action as well as the list of blocks in collision.

Once the road map is constructed, the planner finds the
shortest path from the starting configuration to the goal
configuration (if one exists) using Dijkstra’s algorithm. Each
connection in the road map has an associated cost, which is
based on which type of action is taken and the number of
blocks in collision as a result of the connection. The cost
function takes the form:

C = α11(is pick-and-place)+α21(is push)+α3Nc (1)

where Nc is the number of blocks in collision due to the
connection, α1 is the cost of a pick-and-place action, α2 is
the cost of a push action, and α3 is the cost per collision.
α1, α2, and α3 are tunable design parameters. In general,
it is best to choose α2 > α1 because push actions are less
precise than pick-and-place actions. We discuss the choice
of cost parameters in more detail in Section V and suggest
some areas for improvement.

IV. EXPERIMENT

To test our method, we implemented the above problem
on a UR10e Universal robot arm equipped with a Robotiq
two-finger gripper (Fig. 5). Another important component to
implementing the algorithm on a real system was being able
to measure the configuration of the blocks relative to the
robot system. To simplify the acquisition of configuration
information for the blocks, we used fiducial markers (April-
Tags), which were affixed to the top of each wooden block.
These were observed from an overhead camera whose pose
was calibrated with respect to the robot base.

Furthermore in our task and motion planning method we
abstract away the details of the motions that the robot must
take to perform either the pick-and-place or push actions. We
use the on-board position control and inverse kinematics and
as such must only stream position setpoints for the robot to
follow. For both actions, reaching the robot pose from which
to perform the actions is done by simply moving the robot
in the space above the top of the blocks to a point directly
above the target location. The arm then lowers the gripper to
perform the required action. If a block is being picked then
the gripper is centered at the block center. For a push action,
the gripper is first partially closed, so that the two fingers
can be used as a two-point contact end effector, and then it
is lowered just behind the target block.



Fig. 5. The experimental setup used to test out block arrangement methods.
We utilise a UR10e Universal Robots arm, a Robotiq two finger gripper. The
blocks we are manipulating are 2 inch softwood blocks on a MDF surface.
An overhead camera is used to measure the location of the blocks based on
fiducial markers.

V. RESULTS AND DISCUSSION

The proposed method was successful at planning the task
for up to 9 blocks. The computation time for the planning
was dependent on the number of blocks and the size of the
workspace. For 4 blocks, the planning took less than a few
seconds. For 9 blocks with a large workspace, the planning
typically took around 20-30 seconds. When the workspace is
reduced, the computation time increases. For 9 blocks with
a small workspace, the planning took up to 2 minutes. For
large workspaces, blocks can be cleared into the extra empty
space, which reduced the number of times blocks need to be
cleared out of the way more than once. When the workspace
is smaller, it is less likely that there will be paths with no
collisions. Therefore, more recursions are required to clear
blocks out of the way, which leads to longer computation
time. For 9 blocks and a small workspace, typically 20-25
total actions are needed to complete the task.

The cost function plays an important role in how the task
is planned. Namely, the parameter α3 that controls the cost of
collisions can affect the typical paths. For example, consider
a case where block 1 can only be picked up in one grasp
orientation because block 2 is in the way of the other grasp
orientation. At the goal location, block 1 must be placed
down in the opposite grasp orientation because of a collision
with block 3. One feasible plan is to clear block 2 to an
intermediate location. After doing this, the robot can grasp
block 1 with the correct grasp orientation. Another option is
to move block 1 to an intermediate location, and then re-grasp
in the opposite grasp orientation. The parameter α3 affects
this choice. For small α3, the planner will prefer to clear
block 2 out of the way and then move block 1 using only 1

action. For large α3, the planner will prefer to move block
1 using 2 actions (switching grasp orientations in between)
due to the large cost of having to clear blocks out of the way.

There are some areas for improvement with our implemen-
tation. Including some measure of distance in the cost could
help to reduce the time required to complete the task. This
would ensure the planner does not waste time clearing blocks
very far away if it is not necessary to do so. By adding a
penalty term for the distance of a push, this could help with
the precision of the block manipulation. Push actions are less
precise than pick-and-place actions. The push actions become
less accurate the further the blocks are pushed. Therefore, it
would improve accuracy if the planner preferred push actions
that were short rather than long.

There is also room for improvement in the way block poses
are sampled when clearing blocks. In our implementation,
when a block needs to be cleared out of the way, it samples a
uniform random pose for that block that does not collide with
any other blocks. There are no guarantees that the sampled
pose will actually be out of the way, which could lead to
having to clear blocks multiple times unnecessarily. Another
improvement could be to attempt to place a cleared block
at its goal location if possible. When a block needs to be
cleared out of the way, instead of moving it to a random
intermediate position, the planner could first try to place it at
its correct final pose. This could help optimize the number
of actions required to keep the task.

REFERENCES

[1] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion
planning in belief space,” The International Journal of Robotics
Research, vol. 32, no. 9-10, pp. 1194–1227, 2013. [Online]. Available:
https://doi.org/10.1177/0278364913484072

[2] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, FFRob: An
Efficient Heuristic for Task and Motion Planning. Cham: Springer
International Publishing, 2015, pp. 179–195. [Online]. Available:
https://doi.org/10.1007/978-3-319-16595-0 11

[3] G. Havur, G. Ozbilgin, E. Erdem, and V. Patoglu, “Geometric re-
arrangement of multiple movable objects on cluttered surfaces: A
hybrid reasoning approach,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA), May 2014, pp. 445–452.

[4] A. S. Anders, L. P. Kaelbling, and T. Lozano-Perez, “Reliably
arranging objects in uncertain domains,” in IEEE Conference
on Robotics and Automation (ICRA), 2018. [Online]. Available:
http://lis.csail.mit.edu/pubs/anders-icra18.pdf

[5] A. Krontiris and K. E. Bekris, “Dealing with difficult instances of
object rearrangement,” in Robotics: Science and Systems (RSS), Rome,
Italy, 07/2015 2015. [Online]. Available: http://www.cs.rutgers.edu/
∼kb572/pubs/Krontiris Bekris rearrangement RSS2015.pdf

[6] L. E. Kavraki, P. Svestka, J. . Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, Aug 1996.

https://doi.org/10.1177/0278364913484072
https://doi.org/10.1007/978-3-319-16595-0_11
http://lis.csail.mit.edu/pubs/anders-icra18.pdf
http://www.cs.rutgers.edu/~kb572/pubs/Krontiris_Bekris_rearrangement_RSS2015.pdf
http://www.cs.rutgers.edu/~kb572/pubs/Krontiris_Bekris_rearrangement_RSS2015.pdf

	Introduction
	Problem Statement
	Method
	Piecewise Linear Non-Monotone Rearrangement Search
	Probabilistic Road Map

	Experiment
	Results and Discussion
	References

