
Trajectory Optimization and Control for Ball Bouncing Quadrotors

Ryan Sandzimier, Jerry Ng and Filippos E. Sotiropoulos,

Abstract—The control of quadrotors to impact and juggle
multiple balls in the air with the aim of transporting them to
a specific target is tackled. Specifically this report addresses
the formulation of nonlinear optimizations for the generation
of trajectories necessary to perform the ball juggling task.
By specifying a mode sequence, applying direct collocation
constraints using cubic splines and further constraining the
optimization feasible trajectories were generated. Thereafter,
using time varying LQR we control the quadrotors to track the
reference optimal trajectories. Successful juggling of multiple
balls with multiple quadrotors was achieved.

Index Terms—Trajectory optimization, nonlinear optimiza-
tion, hybrid dynamics, quadrotor control, time varying LQR

I. INTRODUCTION

IN this report we investigate the trajectory optimization
and control of multiple planar quadrotor vehicles to

collaboratively keep balls in the air by bouncing them off
of their top surface. Despite operating in an idealised 2D
environment with perfect collisions the problem still presents
some technical challenges due to the both nonlinear and
hybrid dynamics which will need to be optimized over.

Fig. 1. Our objective is to transport balls by bouncing them multiple times
with planar quadrotors

II. LITERATURE REVIEW

There has been a lot of work on control and trajectory
optimization of quadrotors for performing various navigation
and manipulation tasks [1]–[3].

Furthermore there has been work on the subject of quadro-
tors and juggling balls using a badminton racquet head
attached to a quadrotor [4]. In this work, the group was able
to generate trajectories for: 1) a single quadrotor to return
a ball that is thrown to it, 2) two quadrotors passing a ball

F. E. Sotiropoulos (fes@mit.edu), R. Sandzimier (rsandz@mit.edu) and J.
Ng (jerryng@mit.edu) are with the Department of Mechanical Engineering,
Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge,
USA. Code used for this project can be found at:

https://github.com/rsandzimier/quadrotor juggling

back and forth, 3) a single quadrotor to juggle a ball. The
system operated based on generating trajectories for a single
impact at a time.

In this project we will attempt to generate trajectories
for multiple quadrotors and balls while also using multiple
impacts to achieve a specific desired end state.

III. METHOD

A. Simulated environment

In our task we aim to optimize the juggling of nballs balls
using nquads. In order to do this, we must first simulate the
free dynamics of the quadrotors and balls, as well as the
collision dynamics between quadrotors and balls.

Fig. 2. Simulated quadrotor and ball environment.

1) Free Dynamics: Here we describe the system dynamics
used for both simulation and optimization. The quadrotor
dynamics in free motion are described by:

mqẍ =−(u1 +u2)sinθ

mqÿ = (u1 +u2)cosθ −mqg

Iqθ̈ = r(u1−u2)

(1)

where x, y, and θ are the Cartesian coordinates of the
quadrotor, and u1 and u2 are the thrusts of the propellers,
which we treat as inputs to the system. mq and Iq are the
mass and moment of inertia of the quadrotor, respectively. r
is the length of the moment arm between the propeller and
center of mass of the quadrotor. The full state of the i-th
quadrotor is then:

xi = [xi yi θi ẋi ẏi θ̇i]
T (2)

and the input to the i-th quadrotor is then:

ui = [u1i u2i ]
T (3)

The ball dynamics in free motion are described by projec-
tile motion with negligible air resistance:

ẍ = 0
ÿ =−g

(4)

https://github.com/rsandzimier/quadrotor_juggling


where x and y are the Cartesian coordinates of the ball. The
full state of the j-th ball is then:

x j = [x j y j ẋ j ẏ j]
T (5)

2) Collision Dynamics: We model collisions using dis-
crete updates to the quadrotor and ball states whenever either
two balls collide with each other or a quadrotor collides
with a ball. We did not implement collision dynamics for
collisions between two quadrotors. We implement collision
detection using witness functions. The witness functions
calculate the distance between the outer surfaces of two
objects. When a witness function evaluates to a positive value
when the two objects are not colliding and to a negative
value when the two objects are colliding. Therefore, when
a witness function changes from a positive value to a non-
positive value, a discrete update is applied to the states of
the corresponding objects.

First, we describe these discrete collision dynamics for
collisions between two balls. We treat these collisions as
elastic collisions. Therefore, both momentum and energy are
conserved.

mbv1i +mbv2i = mv1 f +mbv2 f

1
2

mb‖v1i‖
2 +

1
2

mb‖v2i‖
2 =

1
2

mb‖v1 f ‖
2 +

1
2

mb‖v2 f ‖
2

(6)

where v1i and v2i are vectors representing the pre-collision
velocities of the two balls involved in the collision. v1 f

and v2 f are the corresponding post-collision velocities of
the two balls. Fig. 3 illustrates two balls in collision. The
unit vector i points in the direction normal to the collision
surfaces. Likewise, the unit vector j points in the direction
perpendicular to i. Solving 6 for v1 f and v2 f and using the
fact that the component of the velocities in the direction of
j remains unchanged:

v1 f = (v2i · i)i+(v1i · j)j
v2 f = (v1i · i)i+(v2i · j)j

(7)

𝒊𝒋

𝒗1

𝒗2

Ball 1

Ball 2

Fig. 3. Collision between two balls

Whenever the witness function triggers, 7 is used to update
the state of the balls involved in the collision.

Next, we describe the discrete collision dynamics for colli-
sions between quadrotors and balls. We treat these collisions

as elastic collisions. Therefore, linear momentum, angular
momentum, and energy are conserved.

mqvqi +mbvbi = mqvq f +mbvb f

Lqi +Lbi = Lq f +Lb f

Lqi = Iqωqi +mqrq×vqi

Lbi = mbrb×vbi

Lq f = Iqωq f +mqrq×vq f

Lb f = mbrb×vb f

Etransi +Eroti = Etrans f +Erot f

Etransi =
1
2

mq‖vqi‖
2 +

1
2

mb‖vbi‖
2

Eroti =
1
2

Iq‖ωqi‖
2

Etrans f =
1
2

mq‖vq f ‖
2 +

1
2

mb‖vb f ‖
2

Erot f =
1
2

Iq‖ωq f ‖
2

(8)

where vqi and vbi are vectors representing the pre-collision
velocities of the quadrotor and ball, respectively, involved
in the collision. vq f and vb f are the corresponding post-
collision velocities of the quadrotor and ball, respectively. ωqi

and ωq f are vectors representing the pre-collision and post-
collision angular velocities of the quadrotor, respectively.
Fig. 4 illustrates a quadrotor and ball in collision. The
unit vector i points in the direction normal to the collision
surfaces. Likewise, the unit vector j points in the direction
perpendicular to i. Vectors rq and rb represent the moment
arms between the center of mass of the quadrotor-ball system
and the quadrotor and ball, respectively. Solving 8 for vq f ,
vb f , and ωq f and using the fact that the component of the
velocities in the direction of j remains unchanged:

vq f = vq fpar
i+(vqi · j)j

vb f = vb fpar
i+(vbi · j)j

ωq f = ωqi +
mq

Iq
rq× (vqi −vq f )+

mb

Iq
rb× (vbi −vb f )

vq fpar
=

c1(vqi(mq−mb)+2mbvbi)+ c2vqi

c1(mq +mb)+ c2
· i

vb fpar
=

c1(vbi(mb−mq)+2mqvqi)+ c2vbi

c1(mq +mb)+ c2
· i

c1 = mqmbIq

c2 = m2
qm2

b((rq− rb) · j)2

(9)

Whenever the witness function triggers, 9 is used to update
the state of the quadrotor and ball involved in the collision.

B. Trajectory Optimization

In the optimization the trajectory is represented by a series
of knot points with cubic splines used to interpolate between
them. This allows one to constrain the optimization to our
system dynamics using a Direct Collocation approach [5].
As in the standard direct collocation method we constrain the
mathematical program such that the derivative of the spline at



CG

𝒓𝑞

𝒓𝑏 𝒊

𝒋

𝒗𝑏

𝒗𝑞

𝝎𝑞

Fig. 4. Collision between a quadrotor and a ball

the collocation points (which fall at the midpoints between
the breakpoint) is equal to the transition from the system
dynamics.

find x[·],h[·],u[·]
s.t. ẋ(tc,n) = f (x(tc,n),x(tc,n)), ∀n ∈ [0,N−1]\nskip

x[0] = x0

u≤ umax

xi[t f ] = xi f

xj f − ε ≤ xj[t f ]≥ xj f + ε

hmin×N ≤ h[N]≤ hmax×N
(10)

where nskip = {nimpact ,nimpact + 1,nimpact − 1}, and i corre-
sponds to the i-th quadrotor and j corresponds to the j-th
ball. Instead for those time steps backward Euler constraints
are added to constrain the program to the system dynamics.
This is to allow for the discrete update at the collision time.

Additional constraints are added to further constrain the
problem. The input is constrained under a maximum value.
Guards are used to implement discrete collision dynamics
and decide on the time steps that correspond to impacts.
Because there is only a single mode for the system, the
guards reset the state of the system to the same mode.
These guards essentially measured the distance from the outer
radius of each ball to the contact box for each quadrotor,
such that when any quadrotor and any ball made contact the
guard equaled zero. The specific time steps for these guards
to trigger is prescribed to the optimization problem. These
guards are implemented as witness functions.

Other constraints include:
1) Bounds for variable time steps
2) Time steps for collisions.
3) Pitch angles for quadrotors.
4) Final and initial state constraints.
5) Collisions between balls and quadrotors are constrained

in position to be at the center of each quadrotor
In addition, we perform re-optimizations over the course

of the entire simulation to correct for impreciseness in the
impacts compared to the previous optimization. As opposed
to the continuous control of the quadrotors clearly it is not
possible to change the course of a ball after it has been
impacted. Hence, it is consequently necessary to re-optimize
trajectories after collisions.

We determine the point in the simulation to perform
the re-optimization based on the sequence of quadrotor-ball
impacts. The re-optimization are scheduled to occur such
that every ball has at most a single collision before re-
optimization. Then the optimization is triggered to occur
in between the last impact before re-optimizing and the
impact directly following. To have any ball never have two
consecutive impacts without a re-optimization in between we
are assuming that all other balls will have collided before the
ball impacts again. Furthermore, given the assumption that
the new optimized trajectory will be very similar to the new
result

Given the repeated optimizations with a fixed goal and
a receding time horizon this is similar to a low frequency
Model Predictive Controller.

C. Control

The numerical integration performed in simulation and that
which is implied by the direct collocation constraints are not
exactly equivalent and thus the open loop implementation of
the optimal control inputs would lead to the optimal trajectory
and simulated states to diverge. To mitigate this the simulated
quadrotors are controlled using a time varying LQR con-
troller with the objective of minimizing the error between the
quadrotor state and the reference trajectory supplied by the
optimization. The time varying linear control is implemented
with the following steps. Firstly, the trajectory optimization
outputs an optimal trajectory defined by the points on the
spline {x∗[·],u∗[·]} along the optimal time breaks h∗[·]. Then
at each time-break t the linearized system based on a first
order Taylor expansion is determined yielding the system
matrices: At , Bt . Then a standard Linear Quadratic Regulator
state feedback matrix, Kt is calculated for each time break.
This creates a Zero-Order Hold trajectory of K gain matrices.
Then when simulating the system the total control for each
quadrotor:

ui(t) = u∗i (t)−Kt(xi(t)−x∗i (t)) (11)

IV. RESULTS

Using the methods outlined in section III we were able
to achieve optimal trajectories for various scenarios where
the quadrotors were able to successfully juggle balls from an
initial position to a desired final state. In Fig. 5 the simulated
trajectory for a single ball.

Furthermore, in Fig. 6 one can see the trajectory for one
of the quadrotors during the 2 ball 2 quadrotor task which
the ball trajectory in Fig. 5 was also illustrated for. As can
be seen the controller keeps the vehicle on the optimized
trajectory.

V. DISCUSSION

A. Limitations, Challenges and Development steps

The most overarching limitation of the approach and
method that we have implemented is that the sequence of
collisions is fixed a priori. This has several consequences on
the capability of the optimization to find solutions. Firstly,
the fixed time index when collision occurs means that the



Fig. 5. The example optimized and simulated trajectory of one ball with
initial position (−1.5,1.0) and goal position (1.5,1.0)

Fig. 6. Position and orientation variables for a single quadrotor from
both optimization and simulation. The controller keeps the vehicle on the
optimized trajectory.

timing of collisions is constrained by the minimum and
maximum time increments hmin and hmax. Furthermore, the
predetermined sequence of ball-quadrotor combinations lim-
its the task and likely misses solutions with alternative impact
combinations that would be more effective or could solve
specific problems which failed to solve in our case. Given
that simply evaluating all the potential combinations would
be prohibitively computationally intensive (O((qb)c) for q
number of quadrotors, b number of balls and c number of
collision) a higher level planner would need to be introduced
to optimize or determine feasible combination sequences.
Mixed-integer programming methods may need to be applied.

Several considerations were made regarding applying the
final state to the optimization. One attempt was to not fix
the final state of the optimization, and instead to assign
a quadratic error cost only to the final time step. This

however led to issues with the solver unable to solve the
optimization problem during re-optimization towards the last
set of collisions. In addition, it led to an increased time
for optimization, which was somewhat expected. Another
attempt at assigning cost was done to penalize the control
inputs for all quadrotors and also for specific quadrotors.
However, this attempt resulted in an inability to solve the
mathematical program. We believe this may be due to the
solver converging towards a local minimum solution that
violates some of the prescribed constraints.

The final state constraints are not implemented as exact
constraints due to an inability to solve the problem generally.
Instead, the final state constraints were implemented in two
different ways. The first was to constrain the final state to
not care about the velocities of the balls and only constrain
the positions. The second method used was to give a range
for the final ball states; this relaxation allowed for the solver
to solve the problem more readily for a wider variety of
conditions.

In the implementation process, initially the collision dy-
namics were implemented in continuous time using a spring-
damper model. However, this led to issues with the opti-
mization. Firstly, without using a guard the optimizer has
no gradient to use that can help it find a solution where the
quadrotors and balls collide. Also, based on previous issues
we had with no constraints for the control input, it seemed
that this could have been due to high accelerations. As such,
we converted to discrete collision dynamics. This limited us
in that it required us to choose time steps for the collisions.
Because of the variable time step, by choosing this time step
we were essentially choosing a time window for the collision
to happen. Because the controller for the quadrotor must be
of a certain frequency for the optimization and the simulation
to match, the variable time step is bound in to be under a
threshold. With that in mind, the time window for collision
is also fairly limited.

The current implementation does not have collision dy-
namics between the quadrotors, and in fact the quadrotors
are allowed to overlap in the simulation. This allows for
solutions from the solver that would be infeasible in real life.
However, we faced issues in implementing guards related
to the quadrotor-quadrotor interactions as these additional
constraints led to the solver being unable to solve the
mathematical program.

REFERENCES

[1] S. Tang and V. Kumar, “Autonomous flight,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 1, no. 1, pp. 29–52, 2018.

[2] M. Geisert and N. Mansard, “Trajectory generation for quadrotor based
systems using numerical optimal control,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA), 2016, pp. 2958–2964.

[3] P. Foehn, D. Falanga, N. Kuppuswamy, R. Tedrake, and D. Scaramuzza,
“Fast trajectory optimization for agile quadrotor maneuvers with a cable-
suspended payload,” in Robotics: Science and Systems, 2017.

[4] M. Müller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball juggling,”
in 2011 IEEE/RSJ international conference on Intelligent Robots and
Systems. IEEE, 2011, pp. 5113–5120.

[5] M. Kelly, “An introduction to trajectory optimization: How to do your
own direct collocation,” SIAM Review, vol. 59, no. 4, pp. 849–904,
2017.


	Introduction
	Literature Review
	Method
	Simulated environment
	Free Dynamics
	Collision Dynamics

	Trajectory Optimization
	Control

	Results
	Discussion
	Limitations, Challenges and Development steps

	References

